Class -11 Autumn Break Home work

Biology

All the work to be done in classwork notebook

Unit - 1:Diversity in living world

1. Read and revise each chapter in given unit.
2. Prepare 5 question from each chapter.
3. Practice diagrams given in NCERT

Unit - 2: Structural Organisation in plant and animal

1. Read and revise each chapter in given unit.
2. Prepare 5 question from each chapter.
3. Practice diagrams given in NCERT
4. Solve the practice test paper of half yearly provided in the class.

1.	The enthalpies of all elements in their standard states are (a) unity (b) zero (c) <0 (d) different for each element.	
2.	Discuss the shape of the following molecules using the VSEPR model: SiCl4, AsF5, CIF3, NH3	
3.	Ionization enthalpy and atomic radius are closely related properties. Analyze the following graph : What conclusion can you derive from the graph regarding the first ionization enthalpies of alkali metals and noble gases? Justify your answer.	
4.	(i) The energy associated with first orbit in hydrogen atom is $-2.17 \times 10^{-18} \mathrm{~J}$ atom ${ }^{-1}$. What is the energy associated with the fifth orbit ? (ii) Calculate the radius of Bohr's fifth orbit for hydrogen atom.	
5.	i. Give the criteria for spontaneity of a process in terms of free energy change ($\Delta \mathrm{G}$). ii. Exothermic reactions associated with a decrease in entropy are spontaneous at lower temperatures. Justify on the basis of Gibbs equation. iii. For the reaction $2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{g}) \rightarrow 2 \mathrm{D}(\mathrm{g}) \Delta \mathrm{U}^{0}=-10.5 \mathrm{~kJ}$ and $\Delta \mathrm{S}^{0}=-44.1 \mathrm{JK}^{-1}$. Calculate $\Delta \mathrm{G}^{0}$ for the reaction, and predict whether the reaction may occur spontaneously.	
6.	a. For a reaction both $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ are negative. Under what conditions does the reaction occur spontaneously? b. Define- Lattice enthalpy c.	

	Calculate the enthalpy change for the process $\mathrm{CCl}_{4}(\mathrm{~g}) \longrightarrow \mathrm{C}(\mathrm{~g})+4 \mathrm{Cl}(\mathrm{~g})$ and calculate bond enthalpy of $\mathrm{C}-\mathrm{Cl}$ in $\mathrm{CCl}_{4}(\mathrm{~g})$ Given: $\begin{aligned} \Delta_{\text {oap }} H^{\ominus}\left(\mathrm{CCl}_{4}\right) & =30.5 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \quad \Delta_{\mathrm{H}} H^{\ominus}\left(\mathrm{CCl}_{4}\right)=-135.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ \Delta_{a} H^{\ominus}(\mathrm{C}) & =715.0 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { where } \Delta_{a} H^{\ominus} \text { is enthalpy of atomisation } \\ \Delta_{a} H^{\ominus}\left(\mathrm{Cl}_{2}\right) & =242 \mathrm{~kJ} \mathrm{~mol}^{-1} . \end{aligned}$	
7.	The enthalpy of combustion of methane, graphite and dihydrogen at 298 K are, -890.3 kJ mol-1,- 393.5 kJ mol-1 and -285.8 kJ mol-1 respectively. Enthalpy of formation of $\mathrm{CH} 4(\mathrm{~g})$ will be (a) $-74.8 \mathrm{~kJ} \mathrm{~mol}-1$ (b) $-52.27 \mathrm{~kJ} \mathrm{~mol}-1$ (c) $+74.8 \mathrm{~kJ} \mathrm{~mol}-1$ (d) $+52.26 \mathrm{~kJ} \mathrm{~mol}-1$	
8.	The reaction of cyanamide, $\mathrm{NH} 2 \mathrm{CN}(\mathrm{g})$, with dioxygen was carried out in a bomb calorimeter, and $\Delta \mathrm{U}$ was found to be -742.7 kJ mol 1 at 298 K . Calculate enthalpy change for the reaction at 298 K . $\mathrm{NH} 2 \mathrm{CN}(\mathrm{~g})+32 \mathrm{O} 2(\mathrm{~g}) \rightarrow \mathrm{N} 2+\mathrm{CO} 2(\mathrm{~g})+\mathrm{H} 2 \mathrm{O}(\mathrm{l})$	
9.	Calculate the number of kJ of heat necessary to raise the temperature of 60.0 g of aluminium from $35^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$. Molar heat capacity of Al is $24 \mathrm{~J} \mathrm{~mol}-1 \mathrm{~K}-1$.	
10.	Molecular orbitals are formed by the overlap of atomic orbitals. Two atomic orbitals combine to form two molecular orbitals called bonding molecular orbital (BMO) and anti bonding molecular orbital (ABMO). Energy of anti bonding orbital is raised above the parent atomic orbitals that have combined and the energy of the bonding orbital is lowered than the parent atomic orbitals. Energies of various molecular orbitals for elements hydrogen to nitrogen increase in the order : Different atomic orbitals of one atom combine with those atomic orbitals of the second atom which have comparable energies and proper orientation. Further, if the overlapping is head on, the molecular orbital is called 'Sigma', (σ) and if the overlap is lateral, the molecular orbital is called 'pi', (π). The molecular orbitals are filled with electrons according to the same rules as followed for filling of atomic orbitals. However, the order for filling is not the same for all molecules or their ions. Bond order is one of the most important parameters to compare the strength of bonds. Answer the following . a. Calculate the bond order for Hydrogen molecule. b. Calculate the bond order for He c. Calculate the bond order and magnetic nature of Oxygen molecule	

1. Program to find simple interest
2. Program to check whether a person is eligible to vote or not when age is input by user.
3. Program to check a number is even or odd
4. Program to check a number is a negative, positive or zero.
5. Program to accept marks of a student and print his /her result (fail, $\left.3^{\text {rd }}, 2^{\text {nd }}, 1^{\text {st }}\right)$.
6. Program to find greatest number among three numbers
7. Program which accept Sale Price, Cost Price from user and tell shopkeeper is in Profit, in Loss or neither in Profit nor in Loss.
8. Program to print table of any number
9. Program to print factorial of any number
10. Program to print following series : 1,4,9,16,25,36,49
11. Program to print reverse counting from 100 to 1
12. Program to check a string is palindrome or not
13. Program to find greatest number among 10 numbers
14. Program to print Fibonacci series upto 10 terms ($1,1,2,3,5,8,13,21,34,55$)
15. Program to check a given character is vowel or not
16. Program to find sum of even and odd numbers separately from given 10 numbers
17. Program to count and find the sum of negative \& positive numbers separately.
18. Program to find greatest number in a given list of integers.

AUTUMN BREAK HOME WORK CLASS XI -A/B SUBJECT IP / CS (2023-24) COMPLETION OF PRACTICAL FILE

1. Program to find simple interest
2. Program to check whether a person is eligible to vote or not when age is input by user.
3. Program to check a number is even or odd
4. Program to check a number is a negative, positive or zero.
5. Program to accept marks of a student and print his /her result (fail, $\mathbf{3}^{\text {rd }}, \mathbf{2}^{\text {nd }}, \mathbf{1}^{\text {st }}$).
6. Program to find greatest number among three numbers
7. Program which accept Sale Price, Cost Price from user and tell shopkeeper is in Profit, in Loss or neither in Profit nor in Loss.
8. Program to print table of any number
9. Program to print factorial of any number
10. Program to print following series : 1,4,9,16,25,36,49
11. Program to print reverse counting from 100 to 1
12. Program to check a string is palindrome or not
13. Program to find greatest number among 10 numbers
14. Program to print Fibonacci series upto 10 terms (1,1,2,3,5,8,13,21,34,55)
15. Program to check a given character is vowel or not
16. Program to find sum of even and odd numbers separately from given 10 numbers
17. Program to count and find the sum of negative $\&$ positive numbers separately.
18. Program to find greatest number in a given list of integers.

AUTUMN BREAK HOME WORK CLASS XI -A/B SUBJECT IP / CS (2023-24) COMPLETION OF PRACTICAL FILE

1. Program to find simple interest
2. Program to check whether a person is eligible to vote or not when age is input by user.
3. Program to check a number is even or odd
4. Program to check a number is a negative, positive or zero.
5. Program to accept marks of a student and print his /her result (fail, $\left.3^{\text {rd }}, 2^{\text {nd }}, 1^{\text {st }}\right)$.
6. Program to find greatest number among three numbers
7. Program which accept Sale Price, Cost Price from user and tell shopkeeper is in Profit, in Loss or neither in Profit nor in Loss.
8. Program to print table of any number
9. Program to print factorial of any number
10. Program to print following series : $1,4,9,16,25,36,49$
11. Program to print reverse counting from 100 to 1
12. Program to check a string is palindrome or not
13. Program to find greatest number among 10 numbers
14. Program to print Fibonacci series upto 10 terms (1,1,2,3,5,8,13,21,34,55)
15. Program to check a given character is vowel or not
16. Program to find sum of even and odd numbers separately from given 10 numbers
17. Program to count and find the sum of negative $\&$ positive numbers separately.
18. Program to find greatest number in a given list of integers.

1	What is the difference between A° and A.U.?
2	Vander Waal's equation $\left(\frac{P+a}{V^{2}}\right)(V-b)=R T$ find dimensions of a and b
3	E, $m, 1$ and G denote energy, mass, angular momentum and gravitational constant respectively. Determine the dimensions of $E L^{2} / m^{5} G^{2}$
4	Velocity of a body at time t is given by $\sqrt{v}=(3 t-2) \mathrm{m} / \mathrm{s}$ Calculate its i) Acceleration at $\mathrm{t}=2 \mathrm{~s}$, ii) Average acceleration between $t=0 \mathrm{~s}$ to $\mathrm{t}=2 \mathrm{~s}$, iii) Displacement of the body up to 2 s .
5	The displacement x of a particle varies with time as $\mathrm{x}=4 \mathrm{t}^{2}-15 \mathrm{t}+25$. Find the position, velocity and acceleration of the particle at $\mathrm{t}=0$.
6	The V-t graphs of two objects make angle 30° and 60° with the time axis. Find the ratio of their accelerations.
7	A car is moving along x-axis. As shown in figure it moves from 0 to P in 18 seconds and return from P to Q in 6 second. What are the average velocity and average speed of the car in going from (i) O to P (ii) o to P and back to Q
8	Velocity time graph of a moving particle is shown. Find the displacement (1) $0-4 \mathrm{~s}$ (2) $0-8$ (3) 012 s from the graph. Also write the differences between distance and displacement.
9	The velocity time graph for a particle is shown in figure. Draw acceleration time graph from it.
10	A particle is moving along a straight line and its position is given by the relation $x=\left(t^{3}-6 t^{2}-15 t+40\right) m$ Find (a) The time at which velocity is zero. (b) Position and displacement of the particle at that point. (c) Acceleration for the particle at the line

11	A body is thrown with a velocity of $20 \mathrm{~m} / \mathrm{s}$ at an angle 30° with horizontal. How high will it go? Where and when will it touch the ground?
12	Find the equation of motion of a oblique/angular projectile. Hence show that path of a projectile is parabolic.Also calculate the range,maximum height, time of flight. b) Find the range ,time of flight, velocity at any point in case of horizontal projectile.
13	The equation of motion of a body moving in a straight line is given by $S=2 t+5 t^{2}$ where S is displacement at time t. What is the velocity and acceleration of a body at time $t=5 \mathrm{~s}$. Is it a uniform velocity motion or uniform acceleration motion?
14	The magnitude of resultant vector is equal to either of them. What will be the angle between two vectors?
15	Find the angle between two vectors $2 \hat{i}-2 \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+3 \hat{k}$? Also find a vector perpendicular to both of these.
16	The position (x) of a body at time (t) in SI unit is given by the relation $\mathrm{t}=\sqrt{\mathrm{x}}-5$. Calculate its velocity at time $t=2 \mathrm{~s}$.
17	What is the angle of projection at which horizontal range and maximum height are equal?
18	Two forces 5 and 10 kg wt are acting with an inclination of 120° between them. What is the angle which the resultant makes with 10 kg wt?
19	A car moves in such a way that its position changes with time as per the relation $X=3 t^{2}-4 t+1$, where x is in meter and t is in second. Find average velocity of the car between $t=1$ s to $t=3$ s. Also find its velocity at time $t=2 \mathrm{~s}$. Hints: $\mathrm{v}=\mathrm{dx} / \mathrm{dt}=8 \mathrm{~m} / \mathrm{s}$
20	Derive expressions for velocity and acceleration for uniform circular motion. Derive expression for linear acceleration in uniform circular motion
21	Derive an equation for the path of a projectile fired parallel to horizontal.
22	From a certain height above the ground a stone A is dropped gently. Simultaneously another stone B is fired horizontally. Which of the two stones will arrive on the ground earlier?
23	A bomb at rest explodes into three fragments of equal masses. Two fragments fly off at right angles to each other with velocities $9 \mathrm{~ms}^{-1}$ and $12 \mathrm{~ms}^{-1}$ respectively. Calculate the speed of the third fragment.
24	State triangle law of vector addition and using it obtain an expression for the resultant of two vectors acting in same order. Three vectors are having same magnitude and one of them is resultant of the other two. Using the triangle law find the angle between the two vectors other than resultant.
25	What is meant by horizontal range of a projectile? Show that if a projectile is fired at 45^{0} angle with horizontal it covers maximum horizontal range? What is the maximum range of a projectile fired with speed $30 \mathrm{~m} / \mathrm{s}$. Also prove that if two projectiles are fired from same point with same speed from ground at $45^{\circ}+\theta$ and $45^{0}-\theta$ they have same horizontal range.
26	State Newton's second, law of motion. Express it mathematically and hence obtain a relation between force and acceleration.
27	State Newton's real law of motion. How does it explain law of inertia? Derive law of conservation of momentum from this law. A body of mass 4 kg accelerates uniformly from $20 \mathrm{~m} / \mathrm{s}$ to $30 \mathrm{~m} / \mathrm{s}$ in 4 sec . How much force acts on it?

28	a)What is meant by coefficient of friction and angel of friction? Establish the relation between the two? b) State laws of limiting and kinetic friction.
29	State and prove
30	What is meant by a banked road? Draw the free body diagram of a car taking a turn on a banked road and obtain an expression for its maximum safe speed? On a smooth banked curved track of radius of curvature 10 m , a car of mass 500 kg can safely turn with a maximum speed of $24 \mathrm{~m} / \mathrm{s}$. What should be the angle of banking of the track? $(\mu=0.2)$
31	A man weighing 60 Kg is sitting in a lift. What will be its apparent weight if the Lift i) moves vertically upward with a constant velocity of $20 \mathrm{~m} / \mathrm{s}$. ii) moves vertically downward with a constant velocity of $20 \mathrm{~m} / \mathrm{s}$ iii) moves vertically upward with a constant acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$ iv) moves vertically downward with a constant acceleration of $20 \mathrm{~m} / \mathrm{s}^{2}$ v) breaks while going up?
32	A man of mass 70 kg stands on a weighing scale in a lift which is moving (a) upwards with a uniform speed of $10 \mathrm{~m} \mathrm{~s}^{-1}$, (b) downwards with a uniform acceleration of $5 \mathrm{~m} \mathrm{~s}^{-2}$, (c) upwards with a uniform acceleration of $5 \mathrm{~m} \mathrm{~s}^{-2}$. What would be the readings on the scale in each case? (d) What would be the reading if the lift mechanism failed and it hurtled down freely under gravity?
33	A monkey of mass 40 kg climbs on a rope (Fig. 5.20) which can stand a maximum tension of 600 N . In which of the following cases will the rope break: the monkey (a) climbs up with an acceleration of $6 \mathrm{~m} \mathrm{~s}^{-2}$ (b) climbs down with an acceleration of $4 \mathrm{~m} \mathrm{~s}^{-2}$ (c) climbs up with a uniform speed of $5 \mathrm{~m} \mathrm{~s}^{-1}$ (d) falls down the rope nearly freely under gravity?
34	Define impulse of a force. Write the three applications with explanations. State the law of conservation of linear momentum. Write one application of it.
35	A cricket ball of mass 150 g is moving with a velocity of $12 \mathrm{~m} / \mathrm{s}$ and is hit by a bat so that the ball is turned back with a velocity of $20 \mathrm{~m} / \mathrm{s}$. The force of the blow acts on the ball for 0.01 s . Find the average force exerted on the ball by the bat.
36	What is impulse? Give its SI unit. Show that impulse is equal to change in momentum. Two billiard balls each of mass 0.05 kg moving in opposite directions with speed $6 \mathrm{~m} / \mathrm{s}$ collide and rebound with the same speed. What is the impulse imparted to each ball due to other?
37	A shell of mass 0.020 kg is fired by a gun of mass 100 kg . If the muzzle speed of the shell is $80 \mathrm{~m} / \mathrm{s}$, what is the recoil speed of the gun?
38	Force of 16 N and 12 N are acting on a mass of 200 kg in mutually perpendicular directions. Find the magnitude of the acceleration produced?
39	A monkey of mass 40 kg climbs on a rope which can stand a maximum tension 600 N . In which of the following cases will the rope break? The monkey (a) climbs up with an acceleration of $6 \mathrm{~m} / \mathrm{s}^{2}$ (b) climbs down with an acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$ (c) climbs up with a uniform seed of $5 \mathrm{~m} / \mathrm{s}$ (d) falls down the rope freely under gravity. Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ and ignore the mass of the rope.
40	A nucleus is at rest in the laboratory frame of reference. Show that if it disintegrates into two smaller nuclei the products must move in opposite directions.

41	A shell of mass 0.020 kg is fired by a gun of mass 100 kg . If the muzzle speed of the shell is 80 $\mathrm{~m} / \mathrm{s}$ what is the recoil speed of the gun?
42	Two bodies of masses 10 kg and 20 kg respectively kept on a smooth, horizontal surface are tied to the ends of a light string. A horizontal force $F=600 \mathrm{~N}$ is applied to (i) A, (ii) B along the direction of string. What is the tension in the string in each case?
43	A batsman deflects a ball by an angle of 45° without changing its initial speed which is equal to $54 \mathrm{~km} / \mathrm{h}$. What is the impulse imparted to the ball? (Mass of the ball is 0.15 kg .)
44	Two masses 8 kg and 12 kg are connected at the two ends of a light inextensible string that goes over a frictionless pulley. Find the acceleration of the masses, and the tension in the string when the masses are released.
45	Explain why (a) a horse cannot pull a cart and run in empty space,
46	(b) passengers are thrown forward from their seats when a speeding bus stops suddenly, (c) it is easier to pull a lawn mower than to push it, (d) a cricketer moves his hands backwards while holding a catch.
a) Derive Work -Kinetic Energy theorem for i) variable force ii) Constant force. b) Sate and derive law of conservation for mechanical energy. c) Derive an expression for velocity of two objects after elastic collision if the velocities before collisions are u and u_{2}. Also define coefficient of restitution. d) Show that there is loss of Kinetic energy in inelastic collision. e) Calculate the velocity with which the body must be projected so that it completes a vertical circle.	
$47 .$a) State universal law of gravitation. b) Explain the variation of acceleration due to gravity with height and depth. c) Obtain the expression for i) Gravitational Potential iii)Escape velocity	

K V BSF JALALABAD

AUTUMN BREAK HOME WORK CLASS XI SESSION 2023-2024

Day 1(20/10/23)

CONCEPTS AND RESULTS

** Set : a set is a well-defined collection of objects.
If a is an element of a set A, we say that " a belongs to A" the Greek symbol \in (epsilon) is used to denote the phrase 'belongs to'. Thus, we write $a \in A$. If ' b ' is not an element of a set A , we write $\mathrm{b} \notin \mathrm{A}$ and read " b does not belong to A ".
There are two methods of representing a set :
(i) Roster or tabular form
(ii) Set-builder form.

In roster form, all the elements of a set are listed, the elements are being separated by commas and are enclosed within brackets \{ \}. For example, the set of all even positive integers less than 7 is described in roster form as $\{2,4,6\}$.

In set-builder form, all the elements of a set possess a single common property which is not possessed by any element outside the set. For example, in the set $\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\}$, all the elements possess a common property, namely, each of them is a vowel in the English alphabet, and no other letter possess this property. Denoting this set by V, we write $V=\{x: x$ is a vowel in English alphabet\}
** Empty Set : A set which does not contain any element is called the empty set or the null set or the void set. The empty set is denoted by the symbol φ or $\}$.
** Finite and Infinite Sets : A set which is empty or consists of a definite number of elements is called finite otherwise, the set is called infinite.
** Equal Sets : Two sets A and B are said to be equal if they have exactly the same elements and we write
$A=B$. Otherwise, the sets are said to be unequal and we write $A \neq B$.
** Subsets : A set A is said to be a subset of a set B if every element of A is also an element of B.

In other words, $\mathrm{A} \subset \mathrm{B}$ if whenever $\mathrm{a} \in \mathrm{A}$, then $\mathrm{a} \in \mathrm{B}$. Thus $\mathrm{A} \subset \mathrm{B}$ if $\mathrm{a} \in \mathrm{A} \Rightarrow \mathrm{a} \in \mathrm{B}$ If A is not a subset of B, we write $A \not \subset B$.
** Every set A is a subset of itself, i.e., $\mathrm{A} \subset \mathrm{A}$.
** φ is a subset of every set.
** If $A \subset B$ and $A \neq B$, then A is called a proper subset of B and B is called superset of A.
** If a set A has only one element, we call it a singleton set. Thus, $\{$ a $\}$ is a singleton set.
** Closed Interval

$$
\begin{aligned}
:[\mathrm{a}, \mathrm{~b}] & =\{\mathrm{x}: \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}\} \\
:(\mathrm{a}, \mathrm{~b}) & =\{\mathrm{x}: \mathrm{a}<\mathrm{x}<\mathrm{b}\} \\
:[\mathrm{a}, \mathrm{~b}) & =\{\mathrm{x}: \mathrm{a} \leq \mathrm{x}<\mathrm{b}\} \\
& :(\mathrm{a}, \mathrm{~b}]=\{\mathrm{x}: \mathrm{a}<\mathrm{x} \leq \mathrm{b}\}
\end{aligned}
$$

** Open Interval
** Closed open Interval
** Open closed Interval
** Power Set : The collection of all subsets of a set A is called the power set of A. It is denoted by P(A)

If A is a set with $n(A)=m$, then it can be shown that $n[P(A)]=2^{m}$.
** Universal Set : The largest set under consideration is called Universal set.
** Union of sets : The union of two sets A and B is the set C which consists of all those elements which are either in A or in B (including those which are in both). In symbols, we write. $A \cup B=\{x: x \in A$ or $x \in B\}$. $x \in A \cup B \Rightarrow x \in A$ or $x \in B$

$x \notin A \cup B \Rightarrow x \notin A$ and $x \notin B$

** Some Properties of the Operation of Union

(i) $\mathrm{A} \cup \mathrm{B}=\mathrm{B} \cup \mathrm{A}$ (Commutative law)
(ii) $(\mathrm{A} \cup \mathrm{B}) \cup \mathrm{C}=\mathrm{A} \cup(\mathrm{B} \cup \mathrm{C})$ (Associative law)
(iii) $\mathrm{A} \cup \varphi=\mathrm{A}$ (Law of identity element, φ is the identity of \cup)
(iv) $\mathrm{A} \cup \mathrm{A}=\mathrm{A}$ (Idempotent law)
(v) $U \cup A=U($ Law of $U)$
** Intersection of sets : The intersection of two sets A and B is the set of all those elements which belong to both A and B . Symbolically, we write $A \cap B=\{x: x \in A$ and $x \in B\}$ $x \in A \cap B \Rightarrow x \in A$ and $x \in B$
$\mathrm{x} \notin \mathrm{A} \cap \mathrm{B} \Rightarrow \mathrm{x} \notin \mathrm{A}$ or $\mathrm{x} \notin \mathrm{B}$

** Disjoint sets : If A and B are two sets such that $A \cap B=\varphi$, then A and B are called disjoint sets.
** Some Properties of Operation of Intersection
(i) $\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$ (Commutative law).
(ii) $(A \cap B) \cap C=A \cap(B \cap C)$ (Associative law).
(iii) $\varphi \cap \mathrm{A}=\varphi, \mathrm{U} \cap \mathrm{A}=\mathrm{A}$ (Law of φ and U).
(iv) $\mathrm{A} \cap \mathrm{A}=\mathrm{A}$ (Idempotent law)
(v) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ (Distributive law)i. e., \cap distributes
over \cup
** Difference of sets : The difference of the sets A and B in this order is the set of elements which belong to A but not to B . Symbolically, we write A - B and read as " A minus B".

$$
A-B=\{x: x \in A \text { and } x \notin B\} .
$$

[^0]
** Complement of a Set : Let U be the universal set and A a subset of U. Then the complement of A is the set of all elements of U which are not the elements of A. Symbolically, we write A' to denote the complement of A with respect to U .

Thus, $\mathrm{A}^{\prime}=\{\mathrm{x}: \mathrm{x} \in \mathrm{U}$ and $\mathrm{x} \notin \mathrm{A}\}$. Obviously $\mathrm{A}^{\prime}=\mathrm{U}-\mathrm{A}$

Some Properties of Complement Sets

1. Complement laws: (i) $\mathrm{A} \cup \mathrm{A}^{\prime}=\mathrm{U}$ (ii) $\mathrm{A} \cap \mathrm{A}^{\prime}=\varphi$
2. De Morgan's law: (i) $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}(i i)(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
3. Law of double complementation : $\left(\mathrm{A}^{\prime}\right)^{\prime}=\mathrm{A}$
4. Laws of empty set and universal set $\varphi^{\prime}=U$ and $U^{\prime}=\varphi$.

** Practical Problems on Union and Intersection of Two Sets :

(i) $n(A \cup B)=n(A)+n(B)-n(A \cap B)$
(ii) $n(A \cup B)=n(A)+n(B)$, if $A \cap B=\varphi$.
(iii) $n(A \cup B \cup C)=n(A)+n(B)+n(C)-n(A \cap B)-n(B \cap C)-n(A \cap C)+n(A \cap$
$B \cap C$).

QUESTIONS FOR HHW

1: How many elements are there in the complement of set A ?

A. 0
B. 1
C. All the elements of A
D. None of these

2 : Let $U=\{1,2,3,4,5,6,7,8,9,10\}, P=\{1,2,5\}, Q=\{6,7\}$. Then $P \cap Q^{\prime}$ is :
A. P
B. Q
C. Q^{\prime}
D. None
3. The cardinality of the power set of $\{x: x \in N, x \leq 10\}$ is \qquad .
A. 1024
B. 1023
C. 2048
D. 2043
4. If A, B and C are any three sets, then $A \times(B \cup C)$ is equal to:
A. $(\mathrm{A} \times \mathrm{B}) \cup(\mathrm{A} \times \mathrm{C})$
C. $(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{A} \times \mathrm{C})$
B. $(A \cup B) \times(A \cup C)$
D. None of the above

(B) ASSERTION AND REASON

1. DIRECTION: In each of the following questions, a statement of Assertion is given followed by a corresponding statement of Reason just below it. Of the statements, mark the correct answer as
(a) Both assertion and reason are true and reason is the correct explanation of assertion.
(b) Both assertion and reason are true but reason is not the correct explanation of assertion.
(c) Assertion is true but reason is false.
(d) Assertion is false but reason is true
2. Assertion (A) 'The collection of all natural numbers less than 100' is a set.

Reason (R) :A set is a well-defined collection of the distinct objects.

Day 2 (21/10/23)

RELATIONS \& FUNCTIONS CONCEPTS AND RESULTS

** Cartesian Products of Sets: Given two non-empty sets P and Q . The cartesian product P $\times Q$ is the set of all ordered pairs of elements from P and Q, i.e., $P \times Q=\{(p, q): p \in P, q$ $\in \mathrm{Q}$ \}
** Two ordered pairs are equal, if and only if the corresponding first elements, are equal and the second
elements are also equal.
** If there are p elements in A and q elements in B , then there will be pq elements in $\mathrm{A} \times \mathrm{B}$, i.e.
if $n(A)=p$ and $n(B)=q$, then $n(A \times B)=p q$.
** If A and B are non-empty sets and either A or B is an infinite set, then so is $A \times B$.
${ }^{* *} \mathrm{~A} \times \mathrm{A} \times \mathrm{A}=\{(\mathrm{a}, \mathrm{b}, \mathrm{c}): \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{A}\}$. Here $(\mathrm{a}, \mathrm{b}, \mathrm{c})$ is called an ordered triplet.
** Relation : A relation R from a non-empty set A to a non-empty set B is a subset of the cartesian product
$\mathrm{A} \times \mathrm{B}$. The subset is derived by describing a relationship between the first element and the second
element of the ordered pairs in $\mathrm{A} \times \mathrm{B}$. The second element is called the image of the first element.
** The set of all first elements of the ordered pairs in a relation R from a set A to a set B is called the
domain of the relation R .
** The set of all second elements in a relation R from a set A to a set B is called the range of the relation
R. The whole set B is called the co-domain of the relation R. Range \subseteq co-domain.
** A relation may be represented algebraically either by the Roster method or by the Setbuilder method.
** An arrow diagram is a visual representation of a relation.
** The total number of relations that can be defined from a set A to a set B is the number of possible
subsets of $A \times B$. If $n(A)=p$ and $n(B)=q$, then $n(A \times B)=p q$ and the total number of relations is 2^{pq}.
** A relation R from A to A is also stated as a relation on A .

[^1]In other words, a function f is a relation from a non-empty set A to a non-empty set B such that
the domain of f is A and no two distinct ordered pairs in f have the same first element.
If f is a function from A to B and $(a, b) \in f$, then $f(a)=b$, where b is called the image of a under
f and a is called the pre-image of b under f.
** A function which has either R or one of its subsets as its range is called a real valued function. Further,
if its domain is also either R or a subset of R, it is called a real function.

Some functions and their graphs

** Identity function Let \mathbf{R} be the set of real numbers. Define the real valued function $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$ by $\mathrm{y}=\mathrm{f}(\mathrm{x})=\mathrm{x}$ for each $\mathrm{x} \in \mathbf{R}$. Such a function is called the identity function. Here the domain and range of f are \mathbf{R}.

${ }^{* *}$ Constant function : Define the function $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$ by $\mathrm{y}=\mathrm{f}(\mathrm{x})=\mathrm{c}, \mathrm{x} \in \mathbf{R}$ where c is a constant and each $x \in \mathbf{R}$. Here domain of f is \mathbf{R} and its range is $\{c\}$.

**Polynomial function : A function $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$ is said to be polynomial function if for each x in \mathbf{R},
$y=f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$, where n is a non-negative integer and $a_{0}, a_{1}, a_{2}, \ldots, a_{n} \in$ R.
** Rational functions : are functions of the type $\frac{f(x)}{g(x)}$, where $f(x)$ and $g(x)$ are polynomial functions of x defined in a domain, where $\mathrm{g}(\mathrm{x}) \neq 0$.
** The Modulus function : The function $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=|x|$ for each $x \in \mathbf{R}$ is called modulus function. For each non-negative value of $x, f(x)$ is equal to x.
But for negative values of x, the value of $f(x)$ is the negative of the value of x, i.e., $f(x)=\left\{\begin{array}{c}x, x \geq 0 \\ -x, x<0\end{array}\right.$.

** Signum function : The function $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$ defined by

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}
1, \text { if } \mathrm{x}>0 \\
0, \text { if } \mathrm{x}=0 \\
-1, \text { if } \mathrm{x}<0
\end{array}\right.
$$

is called the signum function. The domain of the signum function is \mathbf{R} and the range is the set $\{-1,0,1\}$.

** Greatest integer function :

The function $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$ defined by $\mathrm{f}(\mathrm{x})=[\mathrm{x}], \mathrm{x} \in \mathbf{R}$ assum the value of the greatest integer, less than or equal to x. Such a function is called the greatest integer function.

$$
\begin{aligned}
& {[\mathrm{x}]=-1 \text { for }-1 \leq \mathrm{x}<0} \\
& {[\mathrm{x}]=0 \text { for } 0 \leq \mathrm{x}<1} \\
& {[\mathrm{x}]=1 \text { for } 1 \leq \mathrm{x}<2} \\
& {[\mathrm{x}]=2 \text { for } 2 \leq \mathrm{x}<3 \text { and } \quad \text { so on. }}
\end{aligned}
$$

Algebra of real functions

** Addition of two real functions : Let $\mathrm{f}: \mathrm{X} \rightarrow \mathbf{R}$ and $\mathrm{g}: \mathrm{X} \rightarrow \mathbf{R}$ be any two real functions, where $\mathrm{X} \subset \mathbf{R}$.

Then, we define $(\mathrm{f}+\mathrm{g}): \mathrm{X} \rightarrow \mathbf{R}$ by $(\mathrm{f}+\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})$, for all $\mathrm{x} \in \mathrm{X}$.
** Subtraction of a real function from another : Let $f: X \rightarrow \mathbf{R}$ and $g: X \rightarrow \mathbf{R}$ be any two real functions,
where $\mathrm{X} \subset \mathbf{R}$. Then, we define $(\mathrm{f}-\mathrm{g}): \mathrm{X} \rightarrow \mathbf{R}$ by $(\mathrm{f}-\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})$, for all $\mathrm{x} \in \mathrm{X}$.
** Multiplication by a scalar : Let $\mathrm{f}: \mathrm{X} \rightarrow \mathbf{R}$ be a real valued function and α be a scalar.
Here by scalar, we
mean a real number. Then the product $\alpha \mathrm{f}$ is a function from X to \mathbf{R} defined by $(\alpha \mathrm{f})(\mathrm{x})=\alpha \mathrm{f}(\mathrm{x}), \mathrm{x} \in \mathrm{X}$.
** Multiplication of two real functions : The product (or multiplication) of two real functions $\mathrm{f}: \mathrm{X} \rightarrow \mathbf{R}$ and
$g: X \rightarrow \mathbf{R}$ is a function $f g: X \rightarrow \mathbf{R}$ defined by $(f g)(x)=f(x) g(x)$, for all $x \in X$.
** Quotient of two real functions Let f and g be two real functions defined from $X \rightarrow \mathbf{R}$ where $\mathrm{X} \subset \mathbf{R}$. The
quotient of f by g denoted by $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$, provided $g(x) \neq 0, x \in X$

QUESTIONS FOR HHW

Q 1. If $A=\{a, b\}$ and $B=\{1,2\}$ then the number of functions from set A to set B is
(A) 2
(B) 4
(C) 16
(D) None
of these
Q 2. A function is defined by $f(t)=2 t-5$, then the value of $f(-3)$ is
(A) -11
(B) 11
(C) 1
(D) -1

Q 3. If $f(x)=-|x|$. Choose the correct option from the following:
(A) Domain is set of negative real numbers
(B) Range is set of real
numbers
(C) Range is set of all negative integers
(D) Range is $(-\infty, 0]$

Q 4. Let $\mathrm{f}=\{(1,1),(2,3),(0,-1),(-1,-3)\}$ be a function from Z to Z defined by $\mathrm{f}(\mathrm{x})=\mathrm{mx}+\mathrm{c}$.
Determine c .
(A) 1
(B) 0
(C) -1
(D) -3

Assertion and Reason type (1 mark)

Q 5.In the following question, a statement of Assertion
(A) is followed by a statement of Reason
(R). Choose the correct answer out of the following choices.
(a) Both (A) and (R) are true and (R) is the correct explanation of (A).
(b) Both (A) and (R) are true but (R) is not the correct explanation of (A).
(c) (A) is true but (R) is false.
(d) (A) is false but (R) is true.

ASSERTION (A): The function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ defined by $\mathrm{f}=\{(1, \mathrm{x}),(2, \mathrm{y}),(3, \mathrm{x})\}$, then its domain is $\mathrm{A}=\{1,2,3\}$ and range is $\{\mathrm{x}, \mathrm{y}\}$.
$\operatorname{REASON}(\mathrm{R})$: The range of the function f is always the co-domain set.

Day 3(22/10/23)

TRIGONOMETRIC FUNCTIONS CONCEPTS AND RESULTS

Angles : Angle is a measure of rotation of a given ray about its initial point.
** Measurement of an angle.
**English System (Sexagesimal system)
(i) 1 right angle $=90$ degrees $=90^{\circ}$. (ii) $1^{\circ}=60$ minutes $=60^{\prime}$. (iii) $1^{\prime}=60$ second $=$ 60^{\prime}.
**French System (Centesimal system)
(iv) 1 right angle $=100$ grades $=100 \mathrm{~g} . \quad$ (v) $1 \mathrm{~g}=100$ minutes $=100^{\star} \quad$ (vi) $1^{\prime}=100$ seconds $=100^{\prime \prime}$
**Circular System.
(vii) $180^{\circ}=200^{\mathrm{g}}=\pi$ radians $=2$ right angles, where a radian is an angle subtended at the centre of a circle by an arc whose length is equal to the radius of the circle.
(viii) The circular measure θ of an angle subtended at the centre of a circle by an arc of length \mathbf{l} is equal to the ratio of the length \mathbf{l} to the radius r of the circle.
(ix) Each interior angle of a regular polygon of n sides is equal to $\frac{2 n-4}{n}$ right angles.

T-ratios	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	π

Sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
Cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	-1
\tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	n.d	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0

** Formulae for t-ratios of Allied Angles :

All T-ratio changes in $\frac{\pi}{2} \pm \theta$ and $\frac{3 \pi}{2} \pm \theta$ while remains unchanged in $\pi \pm \theta$ and $2 \pi \pm \theta$.
$\sin \left(\frac{\pi}{2} \pm \theta\right)=\cos \theta \quad \sin \left(\frac{3 \pi}{2} \pm \theta\right)==\cos \theta$
$\cos \left(\frac{\pi}{2} \pm \theta\right)=\mp \sin \theta \quad \cos \left(\frac{3 \pi}{2} \pm \theta\right)= \pm \sin \theta$
II Quadrant
I Quadrant
$\tan \left(\frac{\pi}{2} \pm \theta\right)=\mp \cot \theta \quad \tan \left(\frac{3 \pi}{2} \pm \theta\right)=\mp \cot \theta$
$\sin (\pi \pm \theta)=\mp \sin \theta \quad \sin (2 \pi \pm \theta)= \pm \sin \theta$
0
$\cos (\pi \pm \theta)==\cos \theta$
$\cos (2 \pi \pm \theta)=\cos \theta$
$\theta>0$
$\tan (\pi \pm \theta)= \pm \tan \theta$
$\tan (2 \pi \pm \theta)= \pm \tan \theta$

III Quadrant
IV

Quadrant

** Sum and Difference formulae :

$\sin (A+B)=\sin A \cos B+\cos A \sin B$
$\sin (A-B)=\sin A \cos B-\cos A \sin B$
$\cos (A+B)=\cos A \cos B-\sin A \sin B$
$\cos (A-B)=\cos A \cos B+\sin A \sin B$
$\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}, \quad \tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B} \cdot \tan \left(\frac{\pi}{4}+A\right)=\frac{1+\tan A}{1-\tan A}$,
$\tan \left(\frac{\pi}{4}-\mathrm{A}\right)=\frac{1-\tan \mathrm{A}}{1+\tan \mathrm{A}} \quad \cot (\mathrm{A}+\mathrm{B})=\frac{\cot \mathrm{A} \cdot \cot \mathrm{B}-1}{\cot \mathrm{~B}+\cot \mathrm{A}} \quad \cot (\mathrm{A}-\mathrm{B})=\frac{\cot \mathrm{A} \cdot \cot \mathrm{B}+1}{\cot \mathrm{~B}-\cot \mathrm{A}}$
$\sin (\mathrm{A}+\mathrm{B}) \sin (\mathrm{A}-\mathrm{B})=\sin ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~B}=\cos ^{2} \mathrm{~B}-\cos ^{2} \mathrm{~A}$
$\cos (A+B) \cos (A-B)=\cos ^{2} A-\sin ^{2} B=\cos ^{2} B-\sin ^{2} A$
**Formulae for the transformation of a product of two circular functions into algebraic sum of two circular functions and vice-versa.
$2 \sin A \cos B=\sin (A+B)+\sin (A-B)$
$2 \cos A \sin B=\sin (A+B)-\sin (A-B)$
$2 \cos \mathrm{~A} \cos \mathrm{~B}=\cos (\mathrm{A}+\mathrm{B})+\cos (\mathrm{A}-\mathrm{B})$
$2 \sin \mathrm{~A} \sin \mathrm{~B}=\cos (\mathrm{A}-\mathrm{B})-\cos (\mathrm{A}+\mathrm{B})$
$\sin \mathrm{C}+\sin \mathrm{D}=2 \sin \frac{\mathrm{C}+\mathrm{D}}{2} \cos \frac{\mathrm{C}-\mathrm{D}}{2}$,
$\sin \mathrm{C}-\sin \mathrm{D}=2 \cos \frac{\mathrm{C}+\mathrm{D}}{2} \sin$
$\frac{\mathrm{C}-\mathrm{D}}{2}$.
$\cos \mathrm{C}+\cos \mathrm{D}=2 \cos \frac{\mathrm{C}+\mathrm{D}}{2} \cos \frac{\mathrm{C}-\mathrm{D}}{2}$, $\cos C-\cos D=-2 \sin \frac{C+D}{2} \sin$ $\frac{\mathrm{C}-\mathrm{D}}{2}$.
** Formulae for \mathbf{t}-ratios of multiple and sub-multiple angles :
$\sin 2 \mathrm{~A}=2 \sin \mathrm{~A} \cos \mathrm{~A}=\frac{2 \tan \mathrm{~A}}{1+\tan ^{2} \mathrm{~A}}$.
$\cos 2 \mathrm{~A}=\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}=1-2 \sin ^{2} \mathrm{~A}=2 \cos ^{2} \mathrm{~A}-1=\frac{1-\tan ^{2} \mathrm{~A}}{1+\tan ^{2} \mathrm{~A}}$
$1+\cos 2 \mathrm{~A}=2 \cos ^{2} \mathrm{~A} \quad 1-\cos 2 \mathrm{~A}=2 \sin ^{2} \mathrm{~A} \quad 1+\cos \mathrm{A}=2 \cos ^{2} \frac{\mathrm{~A}}{2} \quad 1-\cos \mathrm{A}=2$
$\sin ^{2} \frac{\mathrm{~A}}{2}$
$\tan 2 \mathrm{~A}=\frac{2 \tan \mathrm{~A}}{1-\tan ^{2} \mathrm{~A}}$,
$\tan 3 \mathrm{~A}=\frac{3 \tan \mathrm{~A}-\tan ^{3} \mathrm{~A}}{1-3 \tan ^{2} \mathrm{~A}}$.
$\sin 3 \mathrm{~A}=3 \sin \mathrm{~A}-4 \sin ^{3} \mathrm{~A}$,
$\sin 15^{\circ}=\cos 75^{\circ}=\frac{\sqrt{3}-1}{2 \sqrt{2}}$.
$\cos 3 \mathrm{~A}=4 \cos ^{3} \mathrm{~A}-3 \cos \mathrm{~A}$
\& $\quad \cos 15^{\circ}=\sin 75^{\circ}=\frac{\sqrt{3}+1}{2 \sqrt{2}}$,
$\tan 15^{\circ}=\frac{\sqrt{3}-1}{\sqrt{3}+1}=2-\sqrt{3}=\cot 75^{\circ}$
$\& \quad \tan 75^{\circ}=\frac{\sqrt{3}+1}{\sqrt{3}-1}=2+\sqrt{3}=\cot 15^{\circ}$.
$\sin 18^{\circ}=\frac{\sqrt{5}-1}{4}=\cos 72^{\circ}$
and $\cos 36^{\circ}=\frac{\sqrt{5}+1}{4}=\sin 54^{\circ}$.
$\sin 36^{\circ}=\frac{\sqrt{10-2 \sqrt{5}}}{4}=\cos 54^{\circ}$
and $\cos 18^{\circ}=\frac{\sqrt{10+2 \sqrt{5}}}{4}=\sin 72^{\circ}$.
$\tan \left(22 \frac{1}{2}\right)^{\circ}=\sqrt{2}-1=\cot 67 \frac{1}{2}^{\circ}$
and $\tan \left(67 \frac{1}{2}\right)^{0}=\sqrt{2}+1=\cot \left(22 \frac{1}{2}\right)^{\circ}$.
** Properties of Triangles: In any $\Delta \mathrm{ABC}$,

$$
\begin{aligned}
& \frac{a}{\sin \mathrm{~A}}=\frac{\mathrm{b}}{\sin \mathrm{~B}}=\frac{\mathrm{c}}{\sin \mathrm{C}} \text { [Sine Formula] } \\
& \cos \mathrm{A}=\frac{\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}}{2 \mathrm{bc}}, \cos \mathrm{~B}=\frac{\mathrm{c}^{2}+\mathrm{a}^{2}-\mathrm{b}^{2}}{2 \mathrm{ca}}, \quad \cos \mathrm{C}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}}{2 \mathrm{ab}} .
\end{aligned}
$$

** Projection Formulae : $\mathrm{a}=\mathrm{b} \cos \mathrm{C}+\mathrm{c} \cos \mathrm{B}, \quad \mathrm{b}=\mathrm{c} \cos \mathrm{A}+\mathrm{a} \cos \mathrm{C}, \quad \mathrm{c}=\mathrm{a} \cos \mathrm{B}+\mathrm{b}$ $\cos \mathrm{A}$
** Some important trigonometric substitutions :

$\sqrt{\mathrm{a}^{2}+\mathrm{x}^{2}}$	Put $\mathrm{x}=\mathrm{a} \tan \theta$ or $\mathrm{a} \cot \theta$
$\sqrt{\mathrm{x}^{2}-\mathrm{a}^{2}}$	Put $\mathrm{x}=\mathrm{a} \sec \theta$ or $\mathrm{a} \operatorname{cosec} \theta$
$\sqrt{\mathrm{a+x}}$ or $\sqrt{\mathrm{a-x}}$ or both	Put $\mathrm{x}=\mathrm{a} \cos 2 \theta$
$\sqrt{\mathrm{a}^{\mathrm{n}+\mathrm{x}^{n}}}$ or $\sqrt{\mathrm{a}^{\mathrm{n}}-\mathrm{x}^{\mathrm{n}}}$ or both	Put $\mathrm{x}^{\mathrm{n}}=\mathrm{a}^{\mathrm{n}} \cos 2 \theta$
$\sqrt{1+\sin 2 \theta}$	$=\sin \theta+\cos \theta$
$\sqrt{1-\sin 2 \theta}$	$=\cos \theta-\sin \theta, 0<\theta<\frac{\pi}{4}$
	$=\sin \theta-\cos \theta, \frac{\pi}{4}<\theta<\frac{\pi}{2}$

**General solutions:

$$
\begin{aligned}
& * \cos \theta=0 \Rightarrow \theta=\mathrm{n} \pi, \mathrm{n} \in \mathrm{Z} \\
& * \sin \theta=0 \Rightarrow \theta=(2 \mathrm{n}+1) \frac{\pi}{2}, \mathrm{n} \in \mathrm{Z} \\
& * \tan \theta=0 \Rightarrow \theta=\mathrm{n} \pi, \mathrm{n} \in \mathrm{Z} \\
& * \sin \theta=\sin \alpha \Rightarrow \theta=\mathrm{n} \pi+(-1)^{\mathrm{n}} \alpha, \mathrm{n} \in \mathrm{Z} \\
& * \cos \theta=\cos \alpha \Rightarrow \theta=2 \mathrm{n} \pi \pm \alpha, \mathrm{n} \in \mathrm{Z} \\
& * \tan \theta=\tan \alpha \Rightarrow \theta=\mathrm{n} \pi+\alpha, \mathrm{n} \in \mathrm{Z}
\end{aligned}
$$

Examples:

1. The value of $\tan 1^{\circ} \tan 2^{\circ} \tan 3^{\circ} \ldots \tan 89^{\circ}$ is:
(a) 0
(b) 1
(c) $1 / 2$
(d) Not defined

Correct option: (b) 1
Solution: $\tan 1^{\circ} \tan 2^{\circ} \tan 3^{\circ} \ldots \tan 89^{\circ}$
$=\left[\tan 1^{\circ} \tan 2^{\circ} \ldots \tan 44^{\circ}\right] \tan 45^{\circ}\left[\tan \left(90^{\circ}-44^{\circ}\right) \tan \left(90^{\circ}-43^{\circ}\right) \ldots \tan \left(90^{\circ}-1^{\circ}\right)\right]$
$=\left[\tan 1^{\circ} \tan 2^{\circ} \ldots \tan 44^{\circ}\right]\left[\cot 44^{\circ} \cot 43^{\circ} \ldots \ldots \cot 1^{\circ}\right] \times\left[\tan 45^{\circ}\right]$
$=\left[\left(\tan 1^{\circ} \times \cot 1^{\circ}\right)\left(\tan 2^{\circ} \times \cot 2^{\circ}\right) \ldots . .\left(\tan 44^{\circ} \times \cot 44^{\circ}\right)\right] \times\left[\tan 45^{\circ}\right]$
We know that, $\tan \mathrm{A} \times \cot \mathrm{A}=1$ and $\tan 45^{\circ}=1$
Hence, the equation becomes as;
$=1 \times 1 \times 1 \times 1 \times \ldots \times 1=1\left\{\right.$ As $\left.1^{\mathrm{n}}=1\right\}$
2. If $\alpha+\beta=\pi / 4$, then the value of $(1+\tan \alpha)(1+\tan \beta)$ is :
(a) 1
(b) 2
(c) -2
(d) Not defined

Correct option: (b) 2
Solution: Given, $\alpha+\beta=\pi / 4$
Taking "tan" on both sides,
$\tan (\alpha+\beta)=\tan \pi / 4$
We know that, $\tan (A+B)=(\tan A+\tan B) /(1-\tan A \tan B)$
and $\tan \pi / 4=1$.
So, $(\tan \alpha+\tan \beta) /(1-\tan \alpha \tan \beta)=1$
$\tan \alpha+\tan \beta=1-\tan \alpha \tan \beta$
$\tan \alpha+\tan \beta+\tan \alpha \tan \beta=1$....(i)
$(1+\tan \alpha)(1+\tan \beta)=1+\tan \alpha+\tan \beta+\tan \alpha \tan \beta$
$=1+1[\operatorname{From}(\mathrm{i})]=2$
3. Find the radius of the circle in which a central angle of 60° intercepts an arc of length

37.4 cm (use $\boldsymbol{\pi}=22 / 7$).

Solution: Given, Length of the $\operatorname{arc}=1=37.4 \mathrm{~cm}$
Central angle $=\theta=60^{\circ}=60 \pi / 180$ radian $=\pi / 3$ radians
We know that, $\mathrm{r}=1 / \theta$

$$
=(37.4) *(\pi / 3)=(37.4) /[22 / 7 * 3]=35.7 \mathrm{~cm}
$$

Q4.Find the value of $\sqrt{\mathbf{3} \boldsymbol{\operatorname { c o s e c }} \mathbf{2 0}}{ }^{\circ}-\sec \mathbf{2 0}$.

Solution: $\sqrt{3} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}$

$$
\begin{aligned}
& =\frac{\sqrt{3}}{\sin 20^{\circ}}-\frac{1}{\cos 20^{\circ}}=\frac{\sqrt{3} \cos 20^{\circ}-\sin 20^{\circ}}{\sin 20^{\circ} \cos 20^{\circ}}=4\left(\frac{\frac{\sqrt{3}}{2} \cos 20^{\circ}-\frac{1}{2} \sin 20^{\circ}}{2 \sin 20^{\circ} \cos 20^{\circ}}\right) \\
& =4\left(\frac{\sin 60^{\circ} \cos 20^{\circ}-\cos 60^{\circ} \sin 20^{\circ}}{\sin 40^{\circ}}\right)=4\left(\frac{\sin \left(60^{\circ}-20^{\circ}\right)}{\sin 40^{\circ}}\right)=4
\end{aligned}
$$

QUESTIONS FOR HHW

1. A horse is tied to a post by a ripe. If the horse moves along a circular path always keeping the rope tight and describes 88 m when it has traced out 72° at the centre, find the length of the rope.
2. If $\operatorname{Cos} \theta=-\frac{1}{2}, \pi<\theta<\frac{3 \pi}{2}$, Evaluate $4 \tan ^{2} \theta-3 \operatorname{Cosec}^{2} \theta$.
3. Show that $\quad \cos 60^{\circ}+\cos 120^{\circ}+\cos 240^{\circ}-\sin 330^{\circ}=0$
4. Show that $\sqrt{2+\sqrt{2+2 \cos 4 x}}=2 \operatorname{Cos} x$
5. Show that $(\cos x-\cos y)^{2}+(\sin x-\sin y)^{2}=4 \sin ^{2}\left(\frac{x-y}{2}\right)$
6. Show that $\cos 2 \theta \cdot \cos \frac{\theta}{2}-\cos 3 \theta \cdot \cos \frac{9 \theta}{2}=\sin 5 \theta \cdot \sin \frac{5 \theta}{2}$
7. Show that $\frac{1+\operatorname{Sin} 2 x-\operatorname{Cos} 2 x}{1+\operatorname{Sin} 2 x+\operatorname{Cos} 2 x}=\tan x$
8. Show that $\operatorname{Cos} \mathrm{A} \cdot \operatorname{Cos}(60-\mathrm{A}) \cdot \operatorname{Cos}(60+\mathrm{A})=\frac{\cos 3 A}{4}$
9. If $\operatorname{Cos} \mathrm{A}+\operatorname{Cos} \mathrm{B}=\frac{1}{2}, \operatorname{Sin} \mathrm{~A}+\operatorname{Sin} \mathrm{B}=\frac{1}{4}$, Show that $\tan \left(\frac{A+B}{2}\right)=\frac{1}{2}$
10. Show that $2 \sin ^{2} \beta+4 \cos (\alpha+\beta) \sin \alpha \sin \beta+\cos 2(\alpha+\beta)=\cos 2 \alpha$.

DAY 4(23/10/23)

COMPLEX NUMBERS
 CONCEPTS AND RESULTS

* A number of the form $(a+i b)$ where $a b \in R$, the set of real numbers, and $i=\sqrt{-1}$ (iota) is called a
complex number. It is denoted by $\mathrm{z}, \mathrm{z}=\mathrm{a}+\mathrm{ib}$. " a " is called the real part of complex number z and "b"
is the imaginary part i.e. $\operatorname{Re}(z)=a$ and $\operatorname{Im}(z)=b$.
* Two complex numbers are said to be equal i.e. $\mathrm{z}_{1}=\mathrm{z}_{2}$.

$$
\begin{array}{ll}
\Leftrightarrow & (a+i b)=(c+i d) \\
\Leftrightarrow & a=c \text { and } b=d \\
\Leftrightarrow & \operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right) \& \operatorname{Im}\left(z_{1}\right)=\operatorname{Im}\left(z_{2}\right) .
\end{array}
$$

* A complex number z is said to be purely real if $\operatorname{Im}(z)=0$ and is said to be purely imaginary if $\operatorname{Re}(\mathrm{z})=0$.
* The set R of real numbers is a proper subset of the set of complex number C , because every real number
can be considered as a complex number with imaginary part zero.
* $\mathrm{i}^{4 \mathrm{n}}=\left(\mathrm{i}^{4}\right)^{\mathrm{n}}=(1)^{\mathrm{n}}=1$
$i^{4 n+1}=i^{4 n} \cdot i=(1) \cdot i=i$
$\mathrm{i}^{4 \mathrm{n}+2}=\mathrm{i}^{4 \mathrm{n}} . \mathrm{i}^{2}=(1)(-1)=-1$
$i^{4 n+3}=i^{4 n} \cdot i^{3}=(1)(-i)=-i$.

Algebra of Complex Numbers

** Addition of two complex numbers : Let $\mathrm{z}_{1}=\mathrm{a}+\mathrm{ib}$ and $\mathrm{z}_{2}=\mathrm{c}+\mathrm{id}$ be any two complex numbers.

Then, the sum $z_{1}+z_{2}$ is defined as follows: $z_{1}+z_{2}=(a+c)+i(b+d)$, which is again a complex number.
The addition of complex numbers satisfy the following properties:
(i) The closure law The sum of two complex numbers is a complex number, i.e., $\mathrm{z}_{1}+\mathrm{z}_{2}$ is a complex number for all complex numbers z_{1} and z_{2}.
(ii) The commutative law For any two complex numbers z_{1} and $\mathrm{z}_{2}, \mathrm{z}_{1}+\mathrm{z}_{2}=\mathrm{z}_{2}+\mathrm{z}_{1}$
(iii) The associative law For any three complex numbers $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}, \quad\left(\mathrm{z}_{1}+\mathrm{z}_{2}\right)+\mathrm{z}_{3}=\mathrm{z}_{1}+\left(\mathrm{z}_{2}+\right.$ z3).
(iv) The existence of additive identity There exists the complex number $0+\mathrm{i} 0$ (denoted as 0), called the additive identity or the zero complex number, such that, for every complex number $\mathrm{z}, \mathrm{z}+0=\mathrm{z}$.
(v) The existence of additive inverse To every complex number $\mathrm{z}=\mathrm{a}+\mathrm{ib}$, we have the complex number $-\mathrm{a}+\mathrm{i}(-\mathrm{b})$ (denoted as -z), called the additive inverse or negative of z . Thus $\mathrm{z}+(-\mathrm{z})=0$ (the additive identity).
** Difference of two complex numbers: Given any two complex numbers z_{1} and z_{2}, the difference $\mathrm{z}_{1}-\mathrm{z}_{2}$ is defined as follows: $\mathrm{z}_{1}-\mathrm{z}_{2}=\mathrm{z}_{1}+\left(-\mathrm{z}_{2}\right)$.
** Multiplication of two complex numbers : Let $\mathrm{z}_{1}=\mathrm{a}+\mathrm{ib}$ and $\mathrm{z}_{2}=\mathrm{c}+\mathrm{id}$ be any two complex numbers.
Then, the product $\mathrm{z}_{1} \mathrm{z}_{2}$ is defined as follows: $\mathrm{z}_{1} \mathrm{z}_{2}=(\mathrm{ac}-\mathrm{bd})+\mathrm{i}(\mathrm{ad}+\mathrm{bc})$
**The multiplication of complex numbers possesses the following properties :
(i) The closure law The product of two complex numbers is a complex number, the product $\mathrm{z}_{1} \mathrm{Z}_{2}$ is a
complex number for all complex numbers z_{1} and z_{2}.
(ii) The commutative law For any two complex numbers z_{1} and $\mathrm{z}_{2}, \mathrm{z}_{1} \mathrm{z}_{2}=\mathrm{z}_{2} \mathrm{z}_{1}$
(iii) The associative law For any three complex numbers $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3},\left(\mathrm{z}_{1} \mathrm{z}_{2}\right) \mathrm{z}_{3}=\mathrm{z}_{1}\left(\mathrm{z}_{2} \mathrm{z}_{3}\right)$.
(iv) The existence of multiplicative identity There exists the complex number $1+\mathrm{i} 0$
(denoted as 1), called the multiplicative identity such that $\mathrm{z} .1=\mathrm{z}$, for every complex number z.
(v) The existence of multiplicative inverse For every non-zero complex number $z=a+i b$ or $\mathrm{a}+\mathrm{bi}$
$(a \neq 0, b \neq 0)$, we have the complex number $\frac{a}{a^{2}+b^{2}}+i \frac{-b}{a^{2}+b^{2}}$ (denoted by $\frac{1}{z}$ or $\left.z^{-1}\right)$, called the
multiplicative inverse of z such that $\mathrm{z} \cdot \frac{1}{\mathrm{z}}=1$ (the multiplicative identity).
(vi) The distributive law For any three complex numbers $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}$,
(a) $\mathrm{z}_{1}\left(\mathrm{z}_{2}+\mathrm{z}_{3}\right)=\mathrm{z}_{1} \mathrm{z}_{2}+\mathrm{z}_{1} \mathrm{z}_{3}$
(b) $\left(\mathrm{z}_{1}+\mathrm{z}_{2}\right) \mathrm{z}_{3}=\mathrm{z}_{1} \mathrm{z}_{3}+\mathrm{z}_{2} \mathrm{z}_{3}$
**Division of two complex numbers : Given any two complex numbers z_{1} and z_{2}, where z_{2} $\neq 0$, the quotient $\frac{\mathrm{z}_{1}}{\mathrm{z}_{2}}$ is defined by $\frac{\mathrm{z}_{1}}{\mathrm{z}_{2}}=\mathrm{z}_{1} \cdot \frac{1}{\mathrm{z}_{2}}$.
**Modulus a Complex Number : Let $\mathrm{z}=\mathrm{a}+\mathrm{ib}$ be a complex number. Then, the modulus of z, denoted by $|\mathrm{z}|$, is defined to be the non-negative real number $\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}$, i.e., $|\mathrm{z}|=$ $\sqrt{a^{2}+b^{2}}$
** Properties of Modulus :
If $\mathrm{z}, \mathrm{z}_{1}, \mathrm{z}_{2}$ are three complex numbers then
(i) $|z|=0 \Leftrightarrow z=0$ i.e., real part and imaginary part are zeroes.
(ii) $|z|=|\bar{z}|=|-z|$
(iii) z. $\overline{\mathrm{z}}=|z|^{2}$
(iv) $\left|z_{1} \cdot z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right|$
(v) $\quad\left|\frac{z_{1}}{\mathrm{z}_{2}}\right|=\frac{\left|\mathrm{z}_{1}\right|}{\left|\mathrm{z}_{2}\right|}, z_{2} \neq 0$
(vi) $\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2 \operatorname{Re}\left(z_{1} \bar{z}_{2}\right)$
(vii) $\left|z_{1}-z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2 \operatorname{Re}\left(z_{1} \bar{z}_{2}\right)$
(viii) $\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}=2\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$
**Conjugate of a Complex Number : Let $\mathrm{z}=\mathrm{a}+\mathrm{ib}$ then its conjugate is denoted by $\bar{z}=(a-i b)$.
**Properties of conjugates :
(i) $\overline{(\bar{z})}=z$
(ii) $\mathrm{z}+\overline{\mathrm{z}}=2 \operatorname{Re}(\mathrm{z})$
(iii) $\mathrm{z}-\overline{\mathrm{z}}=2 \mathrm{i} \operatorname{Im}(\mathrm{z})$
(iv) $\mathrm{z}+\overline{\mathrm{z}}=0 \Rightarrow \mathrm{z}$ is purely real.
(v) \quad z. $\overline{\mathrm{Z}} \quad=[\operatorname{Re}(\mathrm{z})]^{2}+[\operatorname{Im}(\mathrm{z})]^{2}$.
(vi) $\overline{\mathrm{z}_{1} \pm \mathrm{z}_{2}}=\overline{\mathrm{z}_{1}} \pm \overline{\mathrm{z}_{2}}$
(vii) $\overline{\mathrm{z}_{1} \cdot \mathrm{z}_{2}}=\overline{\mathrm{z}_{1}} \cdot \overline{\mathrm{z}_{2}}$
(viii) $\overline{\left(\frac{\mathrm{z}_{1}}{\mathrm{z}_{2}}\right)}=\frac{\overline{\mathrm{z}_{1}}}{\mathrm{z}_{2}}, \quad \mathrm{Z}_{2} \neq 0$

**Argand Plane and Polar Representation

Some complex numbers such as $2+4 \mathrm{i},-2+3 \mathrm{i}, 0+1 \mathrm{i}, 2+0 \mathrm{i},-5-2 \mathrm{i}$ and $1-2 \mathrm{i}$ which correspond to the ordered pairs $(2,4),(-2,3),(0,1)$, $(2,0),(-5,-2)$, and $(1,-2)$, respectively, have been represented geometrically by the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$, and F , respectively.

The plane having a complex number assigned to each of its point is called the complex plane or the Argand plane.

In the Argand plane, the modulus of the complex number $x+i y=\sqrt{x^{2}+y^{2}}$ is the distance between the point $P(x, y)$ to the origin $O(0,0)$. The points on the x-axis corresponds to the complex numbers of the form $a+i 0$ and the points on the y-axis corresponds to the complex numbers of the form $0+i b$.
The x-axis and y-axis in the Argand plane are called, respectively,
 the real axis and the imaginary axis.
The representation of a complex number $z=x+i y$ and its conjugate $\mathrm{z}=\mathrm{x}$ - iy in the Argand plane are, respectively, the points $P(x, y)$ and $Q(x,-y)$.

Geometrically, the point $(x,-y)$ is the mirror image of the point (x, y) on the real axis

QUESTIONS FOR HHW

1	$\mathrm{i}^{\mathrm{n}}+\mathrm{i}^{\mathrm{n}+1}+\mathrm{i}^{\mathrm{n}+2}+\mathrm{i}^{\mathrm{n}+3}$ is equal to (a) 0 (b) 1 (c) -1 (d) 2
2	If $z_{1}=3+2 i$ and $z_{1}=2-4 i$ and $\left\|z_{1}+z_{2}\right\|^{2}+\left\|z_{1}-z_{2}\right\|^{2}$ is equal (a) 11 (b) 22 (c) 55 (d) 66
3	The real part of $\frac{(1+\mathrm{i})^{2}}{3-\mathrm{i}}$ is (a) $\frac{1}{3}$ (b) $-\frac{1}{5}$ (c) $\frac{-1}{3}$ (d) None of these
4	If $\mathrm{z}=-5 \mathrm{i}^{-15}-6 \mathrm{i}^{-8}$ then $\overline{\mathrm{z}}$ is equal to (a) $-6-5 i$ (b) $-6+5 \mathrm{i}$ (c) 6-5i (d) $6+5 i$
5	Multiplicative Inverse of complex number ($1-2 \mathrm{i}$)=... (a) $\frac{1}{5}+i \frac{2}{5}$ (b) $\frac{1}{5}-\mathrm{i} \frac{2}{5}$ (c) $-\frac{1}{5}+\mathrm{i} \frac{2}{5}$ (d) None of these
6	$\begin{aligned} & \text { Assertion-Reason } \\ & \text { Assertion: The equation } \mathrm{ix}^{2}-3 \mathrm{ix}+2 \mathrm{i}=0 \text { has non real roots. } \end{aligned}$

	Reason: If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are real and $\mathrm{b}^{2}-4 \mathrm{ac} \geq 0$, then the roots of the equation ax^{2} $+b x+c=0$ are real and if $b^{2}-4 a c<0$,then the roots of the equation $a x^{2}+b x$ $+\mathrm{c}=0$ are non-real. (a) A is true, R is true; R is a correct explanation of A . (b) A is true, R is true; R is not a correct explanation of A . (c) A is true; R is false (d) A is false; R is true.
7	Case study The conjugate of a complex number z is the complex number obtained by replacing i with $-i$ number. It is denoted by \bar{z}. The modulus of a complex number $\mathrm{z}=\mathrm{a}+\mathrm{ib}$ is defined as the non-negative real number $\sqrt{a^{2}+b^{2}}$. It is denoted by $\|z\|$ i. e $\|z\|=\sqrt{a^{2}+b^{2}}$ (a)If $(x-i y)(3+5 i)$ is the conjugate of $-6-24 i$, the find the value of $x+y$ (b) If $f(z)=\frac{7-z}{1-z^{2}}$, where $z=1+2 i$ then find $\|f(z)\|$.
8	Express the following complex number in the form $a+i b$ $\frac{3-\sqrt{-16}}{1-\sqrt{-9}}$
9	Evaluate $1+\mathrm{i}^{2}+\mathrm{i}^{4}+\mathrm{i}^{6}+\cdots+\mathrm{i}^{20}$.
10	If $\mathrm{z}_{1}, \mathrm{z}_{2}$ are $1-i$ and $-2+4 i$ respectively find $\operatorname{Im}\left(\frac{z_{1}, \mathrm{z}_{2}}{\bar{z}_{1}}\right)$
11	Find the value of $(1+i)^{6}+(1-i)^{3}$
12	Solve the equation $\|\mathrm{z}+1\|=\mathrm{z}+2(1+\mathrm{i})$
13	If $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ and $\mathrm{w}=\frac{\|1-\mathrm{iz}\|}{\|\mathrm{z}-\mathrm{i}\|}$ and $\|\mathrm{w}\|=1$ then show that z is purely real.
14	If $x+i y=\sqrt{\frac{a+i b}{c+i d}}$, then prove that $\left(x^{2}+y^{2}\right)^{2}=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}$

DAY 5(24/10/23)

LINEAR INEQUALITIES

MAIN CONCEPTS AND RESULTS

* Two real numbers or two algebraic expressions related by the symbol ' $<$ ', '>’, ' \leq ’ or ' \geq ’ form an
inequality.
* Numerical inequalities: $3<5 ; 7>5$
* Literal inequalities : $\quad x<5 ; y>2 ; \quad x \geq 3, y \leq 4$
* Double inequalities : $\quad 3<5<7,2<y<4$
*Strict inequalities : $\quad a x+b<0, a x+b>0, a x^{2}+b x+c>0$
* Slack inequalities :
* Linear inequalities :
* Quadratic inequalities : $\quad a x^{2}+b x+c>0, a x^{2}+b x+c \leq 0$
** Algebraic Solutions of Linear Inequalities in One Variable and their Graphical Representation

** Graph of system of linear inequalities, $2 x-6 y<12,3 x+4 y<12$ and $4 x+2 y \geq 8$.

${ }^{* *}$ Graph the system of linear inequalities. $2 x-3 y<6,-x+y \leq 4, \quad 2 x+4 y<8$

QUESTIONS FOR HHW

1. Given that x, y and b are real numbers and $\mathrm{x}<\mathrm{y}, \mathrm{b}>0$, then
A. $\frac{\mathrm{x}}{\mathrm{b}}<\frac{\mathrm{y}}{\mathrm{b}}$
B. $\frac{\mathrm{x}}{\mathrm{b}} \leq \frac{\mathrm{y}}{\mathrm{b}}$
C. $\frac{x}{b}>\frac{y}{b}$
D. $\frac{\mathrm{x}}{\mathrm{b}} \geq \frac{\mathrm{y}}{\mathrm{b}}$
2. The solution set of equation $|x+2| \leq 5$ is
A. $(-7,5)$
B. [-7.3]
C. $[-5,5]$
D. $(-7,3)$
3. The shaded part of a line is in given figure can also be described as

A. $(-\infty, 1) \cup(2, \infty)$
B. $(-\infty, 1] \cup[2, \infty)$
C. $(1,2)$
D. $[1,2]$
4. A recharger manufacturing company produces rechargers and its cost function for a week is $C(x)=\frac{1}{10}(4270+23 x)$ and its revenue function is $R(x)=3 x$, where x is the number of rechargers produced and sold per week. Number of rechargers must be sold for the company to realize a profit is
A. $x \geq 618$
B. $x>610$
C. $x>480$
D.None of These

In the following questions, a statement of Assertion(A)is followed by a statement of Reason (\mathbf{R}). Choose the correct answer out of the following choices.

(a) Both (A) and (R) are true and (R) is the correct explanation of (A).
(b) Both (A) and (R) are true but (R) is not the correct explanation of (A).
(c) (A) is true but (R) is false.
$(d)(A)$ is false but (R) is true.
5. Assertion (A): The solution set of the inequality $x-3<2, x \in N$ is $\{1,2,3,4,5,6,7,8\}$.

Reason (R):Solution set of a inequality in x is set of values of x satisfying the inequality .
Answer.1.A 2.B. 3. A 4. B 5.d
Short type questions (2 marks/3 marks)

1. Solve the inequation $3 x+17 \leq 2(1-x)$
2. Solve the inequality $\frac{x+3}{x-2} \leq 2$
3. Find all pair of consecutive odd integers, both are smaller than 18 , such that their sumis more than20.
4.In a game, a person wins if he gets the sum greater than 20 in four throws of a die. In three throws he got numbers $6,5,4$. What should be number in his fourth throw, so that he wins the game.
5.Solve the inequalities and represent the solution graphically on number line:
$5 x+1>-24,5 x-1<24$.
6 . Solve $3 x-5<x+1$. Show the solution on number line.
4. A solution of 9% acid is to be diluted by adding 3% acid solution to it. The resulting mixture is to be more than 5% but less than 7% acid. If there is 460 liters of 9% acid solution, how many liters of 3% solution will have to be added?
5. Solve the inequality $\frac{2 x-3}{4}+9 \geq 3+\frac{4 x}{3}$.
9.The longest side of a triangle is twice the shortest side and the third side is 2 cm longer than the shortest side. If the perimeter of the triangle is more than 166 cm then find the minimum length of the shortest side.
6. Solve the inequation $\frac{2 x+4}{x-1} \geq 5$

DAY 6(25/10/23)

PERMUTATIONS AND COMBINATIONS
 MAIN CONCEPTS AND RESULTS

** Fundamental principle of counting, or (the multiplication principle): "If an event can occur in m different ways, following which another event can occur in n different ways, then the total number of occurrence of the events in the given order is $m \times n$."
**Factorial notation The notation $n!$ represents the product of first n natural numbers, i.e., the product
$1 \times 2 \times 3 \times \ldots \times(\mathrm{n}-1) \times \mathrm{n}$ is denoted as n !. We read this symbol as ' n factorial'.
Thus, $1 \times 2 \times 3 \times 4 \ldots \times(\mathrm{n}-1) \times \mathrm{n}=\mathrm{n}$!

$$
\begin{array}{rlrl}
\mathrm{n}! & =\mathrm{n}(\mathrm{n}-1)! \\
& =\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)! & \quad[\operatorname{provided}(\mathrm{n} \geq 2)] \\
& =\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)(\mathrm{n}-3)!\quad[\operatorname{provided}(\mathrm{n} \geq 3)]
\end{array}
$$

**Permutations A permutation is an arrangement in a definite order of a number of objects taken some or all at a time.
** The number of permutations of n different objects taken r at a time, where $0<\mathrm{r} \leq \mathrm{n}$ and the objects do not
repeat is $n(n-1)(n-2) \ldots(n-r+1)$, which is denoted by

$$
\mathrm{P}(\mathrm{n}, \mathrm{r}) \quad \mathrm{OR} \quad{ }^{\mathrm{n}} \mathrm{P}_{\mathrm{r}}=\frac{\mathrm{n}!}{(\mathrm{n}-\mathrm{r})!}, 0 \leq \mathrm{r} \leq \mathrm{n}
$$

$$
* *{ }^{n} P_{0}=1={ }^{n} P_{n}
$$

** The number of permutations of n different objects taken r at a time, where repetition is allowed, is n^{r}.
** The number of permutations of n objects, where p_{1} objects are of one kind, p_{2} are of second kind, \ldots, p_{k} are of $k^{\text {th }}$ kind and the rest, if any, are of different kind is $\frac{n!}{p_{1}!p_{2}!\ldots p_{k}!}$.
** The number of permutations of an dissimilar things taken all at a time along a circle is (n -1) !.
** The number of ways of arranging a distinct objects along a circle when clockwise and anticlockwise
arrangements are considered alike is $\frac{1}{2}(n-1)!$.
** The number of ways in which ($\mathrm{m}+\mathrm{n}$) different things can be divided into two groups containing m and n things is $\frac{(m+n)!}{m!n!}$.
Combination of n different objects taken r at a time, denoted by ${ }^{n} C_{r}=\frac{n!}{r!(n-r)!}$.

$$
\begin{gathered}
* *{ }^{\mathrm{n}} \mathrm{P}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{r}!, \quad 0 \leq \mathrm{r} \leq \mathrm{n} \\
* *{ }^{\mathrm{n}} \mathrm{C}_{0}=1={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \\
{ }^{\mathrm{n}} \mathrm{C}_{1}=\mathrm{n}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}-1} \\
{ }^{\mathrm{n}} \mathrm{C}_{2}=\frac{\mathrm{n}(\mathrm{n}-1)}{2!}={ }^{\mathrm{n}} \mathrm{C}_{2} \\
{ }^{\mathrm{n}} \mathrm{C}_{3}=\frac{\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-3)}{3!}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}-3} \\
* *{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{s}} \Rightarrow \mathrm{r}=\mathrm{s} \text { or } \mathrm{r}+\mathrm{s}=\mathrm{n} \\
* *{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}={ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{r}}
\end{gathered}
$$

QUESTIONS FOR HHW

Q. $1 \mathrm{If}^{10} \mathrm{Pr}=5040$, find the value of r
Q. 2 If $5 .{ }^{4} \mathrm{Cr}=6 .{ }^{5} \mathrm{C}_{\mathrm{r}-1}$, find value of r .
Q. 3 How many 6-digit number can be formed from the digits $0,1,3,5,7,9$ which are divisible by 10
and no digit is repeated ?
Q. 4 How many words can be formed by using the letters of the word ORIENTAL, so that the vowels always occupy the odd places ?
Q. 5 How many squares in a chess board?
Q. 6 How many palindrome of 5 letters can be made by using letters of the word MATHS?
Q. 7 It is required to seat 5 men and 4 women in a row so that the women occupy the even places.
How many such arrangements are possible ?
Q. 8 Given 12 flags of different colours, how many different signals can be generated if each signal
requires the use of 2 flags, one below the other?
Q. 9 There are four bus routes between A and B; and three bus routes between B and C. A man can
travel round-trip in number of ways by bus from A to C via B . If he does not want to use a bus
route more than once, in how many ways can he make round trip?
Q. 10 In an examination there are three multiple choice questions and each question has 4 choices.

Find the number of ways in which a student can fail to get all answer correct.
Long answer type questions
Q. 1 A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl? (ii) at least one boy and one girl? (ii) at least 3 girls? Q. 2 Find the number of words with or without meaning which can be made using all the letters of
the word AGAIN. If these words are written as in a dictionary, what will be the 50th word?
Q. 3 In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I
and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
Q. 4 How many number of signals that can be sent by 6 flags of different colours taking one or
more at a time?
Q. 5 A sports team of 11 students is to be constituted, choosing at least 5 from Class XI and at least
5 from Class XII. If there are 20 students in each of these classes, in how many ways can the team be constituted?

DAY 7(26/10/23)

BINOMIAL THEOREM
 MAIN CONCEPTS AND RESULTS

** Binomial theorem for any positive integer n

$$
(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} \cdot b+{ }^{n} C_{2} a^{n-2} \cdot b^{2}+\ldots{ }^{n} C_{n-1} a \cdot b^{n-1}+{ }^{n} C_{n} b^{n}=\sum_{k=0}^{n}{ }^{n} C_{k} a^{n-k} b^{k}
$$

** The coefficients ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}$ occurring in the binomial theorem are known as binomial coefficients.
** There are $(\mathrm{n}+1)$ terms in the expansion of $(\mathrm{a}+\mathrm{b})^{\mathrm{n}}$, i.e., one more than the index.
** $(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+\ldots+{ }^{n} C_{n-1} x^{n-1}+{ }^{n} C_{n} x^{n}$
** $(1-x)^{n}={ }^{n} C_{0}-{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}-\ldots+(-1)^{n}{ }^{n} C_{n} x^{n}$.
** ${ }^{n} \mathrm{C}_{0}+{ }^{\mathrm{n}} \mathrm{C}_{1}+{ }^{\mathrm{n}} \mathrm{C}_{2}+{ }^{\mathrm{n}} \mathrm{C}_{3}+\ldots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}=2^{\mathrm{n}}$.
$* *{ }^{*} \mathrm{C}_{0}-{ }^{\mathrm{n}} \mathrm{C}_{1}+{ }^{\mathrm{n}} \mathrm{C}_{2}-{ }^{\mathrm{n}} \mathrm{C}_{3}+\ldots+(-1)^{\mathrm{n}-1}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}=0$.
** General Term in the expansion of $(a+b)^{n}=t_{r+1}={ }^{n} C_{r} a^{n-r} \cdot b^{r}$
** Middle term in the expansion of $(\mathrm{a}+\mathrm{b})^{\mathrm{n}}$
(i) $\left(\frac{\mathrm{n}}{2}+1\right)^{\text {th }}$ term if n is even **Pascal's Triangle

Inde0	
	1
	2
	3
	4

(ii) $\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}$ and $\left(\frac{\mathrm{n}+1}{2}+1\right)^{\text {th }}$ terms if n is odd.

Coefficients ${ }^{0}{ }^{\circ} \mathrm{C}_{0}$
$(=1)$

QUESTIONS FOR HHW

1	$\left(1+4 \mathrm{x}+4 \mathrm{x}^{2}\right)^{10}$ has
	10 TERMS 3 B) 11 TERMS $\begin{aligned} & \text { C) } 20 \text { TERMS }\end{aligned}$
2	The ratio of the coefficients of x^{r} and x^{r-1} in $(1+x)^{n}$ is A) $\frac{n+r}{r}$ B) $\frac{n-r+1}{r}$ C) $\frac{n+r-1}{r}$ D) NONE
3	If the coefficient of x^{2} and x^{3} in the expansion of $(3+m x)^{9}$ are equal , then the value of m is A) $-\frac{9}{7}$ B) $-\frac{7}{9}$ C) $\frac{9}{7}$ D) $\frac{7}{9}$
4	The term independent of x in the expansion of $\left(2 x+\frac{1}{3 x^{2}}\right)^{6}$ is A) $2^{\text {nd }}$ B) $3^{\text {rd }}$ C) $4^{\text {th }}$ D) $5^{\text {th }}$
5	Using binomial theorem, evaluate (99) ${ }^{5}$.
6	Expand $\left(\mathrm{x}^{2}+\frac{3}{\mathrm{x}}\right)^{4}, \mathrm{x} \neq 0 \mathrm{~b}$ using Pascal triangle.
7	Prove that: $(a+b)^{6}-(a-b)^{6}$ is aneven number if a and b are integers:
8	Find $4^{\text {th }}$ term of the expansion $\left(3 x+\frac{2}{x}\right)^{6}$
9.	Find $5^{\text {th }}$ term from the end of the expansion $(a+b x)^{7}$
10.	Find $(a+b)^{6}-(a-b)^{6}$ hence evaluate $(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}$
11	Find a, if the 4th and 5th term of the expansion (2+a) ${ }^{7}$ are equal.
12	Expand: $\left(x^{2}+1-2 x\right)^{3}$
13	Find the value of $\left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}$
14	Using binomial theorem prove that $5^{4 \mathrm{n}}+52 \mathrm{n}-1$ is divisible by $676 \forall \mathrm{n} \in \mathrm{N}$
15	Find he middle term in the expansion $\left[\frac{x}{7}-\frac{5}{x}\right]^{6}$
16	Find the coefficient of x^{4} in $\left[2 x^{2}-\frac{3}{x}\right]^{5}$
17	Using the binomial theorem, show that $6^{\mathrm{n}}-5$ n always leaves remainder 1 when divided by 25

18 Find a if coefficients of x^{2} and x^{3} in (3+ax) ${ }^{9}$ are equal.
19 The coefficients of $2^{\text {nd }}$ and $3^{\text {rd }}$ terms in the expansion of $(1+a)^{\text {n }}$ are in the ratio 1:2. Find n.
20 Find the middle term(terms) in the expansion of $\left(3 x-\frac{x^{3}}{6}\right)^{5}$
21 Case based Question:In class XI, teacher explained binomial theorem. Two students Shivani and Vishwani trying to solve the exercise. Shivani expanded $(1+x)^{6}$ by using Binomial theorem, Viswani expanded $(x+1)^{6}$.
Based on this above information answer the following questions.

1. According to Shivani find 4th term .
2. Find the value of $6_{C_{0}}+6_{C_{1}}+6_{C_{2}}+6_{C_{3}}+\ldots \ldots+6_{C_{6}}$
3. Find the positive value of x if $3^{\text {rd }}$ terms of Shivani and Vishwani are equal.

DAY 8(27/10/23)

SEQUENCE AND SERIES
 CONCEPTS AND RESULTS

** Sequence : is an arrangement of numbers in a definite order according to some rule. A sequence can also
be defined as a function whose domain is the set of natural numbers or some subsets of the type $\{1,2,3 \ldots . . \mathrm{k}) .{ }^{* *}$ A sequence containing a finite number of terms is called a finite sequence. A sequence is called infinite if it is not a finite sequence.
${ }^{* *}$ Series : If $a_{1}, a_{2}, a_{3}, \ldots$, an, be a given sequence. Then, the expression $a_{1}+a_{2}+a_{3}+, \ldots+a_{n}$ + ...
** Arithmetic Progression (A.P.) : is a sequence in which terms increase or decrease regularly by the same
constant.
A sequence $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$ is called arithmetic sequence or arithmetic progression if
$a_{n}+1=a_{n}+d, n \in N$, where a_{1} is called the first term and the constant term d is called the common
difference of the A.P.
** The $\mathrm{n}^{\text {th }}$ term (general term) of the A.P. $a, a+d, a+2 d, \ldots$ is $\mathbf{a}_{\mathbf{n}}=\mathbf{a}+(\mathbf{n}-\mathbf{1}) \mathbf{d}$.
** If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P. and $\mathrm{k}(\neq 0)$ is any constant, then
(i) $a+k, b+k, c+k$ are also in A.P.
(ii) $\mathrm{a}-\mathrm{k}, \mathrm{b}-\mathrm{k}, \mathrm{c}-\mathrm{k}$ are also in A.P.
(iii) ak, bk, ck are also in A.P
(iv) $\frac{\mathrm{a}}{\mathrm{k}}, \frac{\mathrm{b}}{\mathrm{k}}, \frac{\mathrm{c}}{\mathrm{k}}$ are also in A.P.
** If $a, a+d, a+2 d, \ldots, a+(n-1) d$ be an A.P. Then $1=a+(n-1) d$.

Sum to n terms $S_{n}=\frac{n}{2}[2 a+(n-1) d$

$$
=\frac{n}{2}[a+1]
$$

** Arithmetic mean (A.M.) between two numbers a and b is $\frac{\mathrm{a}+\mathrm{b}}{2}$.
** \mathbf{n} arithmetic means between two numbers a and b are
$a+\frac{(b-a)}{n+1}, a+\frac{2(b-a)}{n+1}, a+\frac{3(b-a)}{n+1}, \ldots, a+\frac{n(b-a)}{n+1}$.
${ }^{* *}$ Sum of n A.M. ${ }^{\text {S }}=\mathrm{n}$ (single A.M.)
** Three consecutive terms in A.P. are $a-d, a, a+d$.
Four consecutive terms in A.P. are $a-3 d, a-d, a+d, a+3 d$.
Five consecutive terms in A.P. are $a-2 d, a-d, a, a+d, a+2 d$.
These results can be used if the sum of the terms is given.
** In an A.P. the sum of terms equidistant from the beginning and end is constant and equal to the sum of first and last terms.
** $\mathrm{m}^{\text {th }}$ term from end of an A.P. $=(\mathrm{n}-\mathrm{m}+1)^{\text {th }}$ term from the beginning.
**Geometric Progression (G . P.) :A sequence is said to be a geometric progression or G.P., if the ratio of any term to its preceding term is same throughout.

A sequence $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$ is called geometric progression, if each term is nonzero and
$\frac{a_{k+1}}{a_{k}}=r($ constant $)$, for $k \geq 1$.
By taking $\mathrm{a}_{1}=\mathrm{a}$, we obtain a geometric progression, $\mathrm{a}, \mathrm{ar}, \mathrm{ar}^{2}, \mathrm{ar}^{3}, \ldots$, where a is called the first term
and r is called the common ratio of the G.P.
** General term of a G .P. $=a_{n}=\operatorname{ar}^{\mathrm{n}-1}$.
** Sum to n terms of a G.P. $=\frac{a\left(r^{n}-1\right)}{r-1}$ if $r>1$ and $\frac{a\left(1-r^{n}\right)}{1-r}$ if $r<1$.
** Sum of terms of an infinite G.P. $=\frac{\mathrm{a}}{1-\mathrm{r}}$.
** Geometric Mean (G.M.): of two positive numbers a and b is the number is $\sqrt{\mathrm{ab}}$.
** \mathbf{n} geometric mean between two numbers a and b are
$a\left(\frac{b}{a}\right)^{\frac{1}{n+1}}, a\left(\frac{b}{a}\right)^{\frac{2}{n+1}}, a\left(\frac{b}{a}\right)^{\frac{3}{n+1}}, \ldots a\left(\frac{b}{a}\right)^{\frac{n}{n+1}}$.
** Three consecutive terms in G.P. are $\frac{a}{r}$, $a, ~ a r$.
Four consecutive terms in G.P. are $\frac{\mathrm{a}}{\mathrm{r}^{3}}, \frac{\mathrm{a}}{\mathrm{r}}, \mathrm{ar}^{2}, \mathrm{ar}^{3}$.
Five consecutive terms in G.P. are $\frac{\mathrm{a}}{\mathrm{r}^{2}}, \frac{\mathrm{a}}{\mathrm{r}}, \mathrm{a}, \mathrm{ar}, \mathrm{ar}^{2}$.

QUESTIONS FOR HHW

Q1. If $3^{\text {rd }}, 8^{\text {th }}$ and $13^{\text {th }}$ terms of G.P. are p, q and r respectively, then which one of the following is correct
a . $q^{2}=p r$
b. $r^{2}=p q$
c. $p q=r$
d. $2 q=p+r$

Q2. . If nth term of a sequence is $\mathrm{a}_{\mathrm{n}}=(-1)^{\mathrm{n}-1} \mathrm{n}^{3}$, then its $9^{\text {th }}$ term is
A) 105
B) 177
C) 324
D) 729

Q3. geometric mean between 1 and 256 IS
A) 8
b. 16
c. 14
d. 12

Q4. If $x, 2 x+3,3 x+3$ are in G.P. ,then $4^{\text {th }}$ term is
A) -13.5
b. -14.5
c.-15.5
d. -16.5

Q5. Statement I: Four terms of the G.P. $3,3^{2}, 3^{3}, \ldots$. Are needed to give the sum 120
Statement II: $\mathrm{T}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}}$ is $\mathrm{n}^{\text {th }}$ terms of G.P. whose first term is a and common ratio r .
a) Both the statement I and Statement II are true and statement II is the correct explanation of Statement I
b) Both the statement I and Statement II are true and statement II is not the correct explanation of Statement I
c) Statement I is true but Statement II is false
d) Statement I is false but Statement II is true

Q6 Write first five terms of sequence whose $\mathrm{n}^{\text {th }}$ term is given by $\mathrm{a}_{\mathrm{n}}=(-1)^{\mathrm{n}-1} 5^{\mathrm{n}+1}$
Q7.for what values of x, the numbers $-2 / 7, x-7 / 2$ are in G.P.
Q8. Find the $12^{\text {th }}$ term of a G.P. whose $8^{\text {th }}$ term is 192 and the common ratio is 2 .
Q9. The sum of first three terms of a G.P. is $\frac{39}{10}$ and their product is 1 . Find the common ratio and
the terms.
Q10. Find the sum to n terms of the sequence, $8,88,888,8888$..
11. Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that
$\mathrm{P}^{2} \mathrm{R}^{\mathrm{n}}=\mathrm{S}^{\mathrm{n}}$.
12. If A and G be A.M. and G.M., respectively between two positive numbers, prove that the numbers are $\mathrm{A} \pm \sqrt{(\mathrm{A}+\mathrm{G})(\mathrm{A}-\mathrm{G})}$.

13 Case study

Rahul being a plant lover decides toopen a nursery and he bought fewplants with pots. He wants
to place potsin such a way that number of pots infirst row is 2 , in second row is 4 and in third row is 8 and so on. Answer the following questions based on the above information.
(i) Find the number of pots in the 8th row.
(ii) Find the total number of pots in 10 rows.
(iii) If Rahul wants to place 510 pots in all, how many rows will be formed?

DAY 9(28/10/23)

STRAIGHT LINES

CONCEPTS AND RESULTS
** Any point on the X -axis is $(\mathrm{x}, 0)$ and on the Y -axis is $(0, \mathrm{y})$
** Distance between two points $A\left(x_{1}, y_{1}\right) \& B\left(x_{2}, y_{2}\right)$ is $A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.

** Section formula

(i) Coordinates of a point dividing the line joining $A\left(x_{1}, y_{1}\right) \& B\left(x_{2}, y_{2}\right)$ internally in the ratio $\mathrm{m}: \mathrm{n}$ is

$$
\left(\frac{\mathrm{mx}_{2}+\mathrm{nx}_{1}}{\mathrm{~m}+\mathrm{n}}, \frac{\mathrm{my}_{2}+\mathrm{ny}_{1}}{\mathrm{~m}+\mathrm{n}}\right) .
$$

(ii) Coordinates of a point dividing the line joining $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \& \mathrm{~B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ externally in the ratio $\mathrm{m}: \mathrm{n}$ is

$$
\left(\frac{\mathrm{mx}_{2}-\mathrm{nx}_{1}}{\mathrm{~m}-\mathrm{n}}, \frac{\mathrm{my}_{2}-\mathrm{ny}_{1}}{\mathrm{~m}-\mathrm{n}}\right) .
$$

** Coordinates of the mid point of the line joining $A\left(x_{1}, y_{1}\right) \& B\left(x_{2}, y_{2}\right)$ is
$\left(\frac{\mathrm{x}_{1}+\mathrm{y}_{1}}{2}, \frac{\mathrm{x}_{2}+\mathrm{y}_{2}}{2}\right)$
** Centroid of a $\triangle A B C$ with vertices $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right) \& C\left(x_{3}, y_{3}\right)$
$\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$.
${ }^{* *}$ In centre of $\triangle A B C$ with vertices $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right) \& C\left(x_{3}, y_{3}\right)$ is $\left(\frac{a x_{1}+b x_{2}+c x_{3}}{a+b+c}, \frac{a y_{1}+b y_{2}+c y_{3}}{a+b+c}\right)$ where $a=B C, b=A C, c=A B$.
** Area of $\triangle A B C$ with vertices $A\left(x_{1}, y_{1}\right), \left.B\left(x_{2}, y_{2}\right) \& C\left(x_{3}, y_{3}\right)=\frac{1}{2} \right\rvert\, x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)$
$+x_{3}\left(y_{1}-y_{2}\right)$.
** Equation of any line parallel to X -axis is $\mathrm{y}=\mathrm{a}$, \& equation of X -axis is $\mathrm{y}=0$.
** Equation of any line parallel to Y - axis is $\mathrm{x}=\mathrm{b} \&$ equation of Y axis is $\mathrm{x}=0$.
** Slope of line inclined at an angle θ with the + ve $X-$ axis $=\tan \theta$.
** Slope of a line parallel to X -axis $=0$, slope of a line parallel to Y -axis $=$ undefined.
Slope of a line equally inclined to the coordinate axes is -1 or 1 .
** Slope of a line joining the points $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is $\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}, \mathrm{x}_{1} \neq \mathrm{x}_{2}$.
** Slope of the line $a x+b y+c=0$, is $-\frac{a}{b}$.
** If two lines are parallel, then their slopes are equal.
** If two lines are perpendicular, then the product of their slopes is -1 .
** Any equation of the form $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$, with A and B are not zero, simultaneously, is called the general linear equation or general equation of a line.
(i) If $\mathrm{A}=0$, the line is parallel to the x -axis \quad (ii) If $\mathrm{B}=0$, the line is parallel to the y axis
(iii) If $\mathrm{C}=0$, the line passes through origin.
** Equation of a line having slope $=m$ and cutting off an intercept ' \mathbf{c} ' and Y -axis is $\mathrm{y}=\mathrm{mx}+$ c.
** Equation of a line through the point $\left(x_{1}, y_{1}\right)$ and having slope m is $y-y_{1}=m\left(x-x_{1}\right)$.
** Equation of a line making intercepts of ' a ' \& ' b ' on the respective axes is $\frac{x}{a}+\frac{y}{b}=1$
** The equation of the line having normal distance from origin p and angle between normal and the
positive x -axis ω is given by $\mathrm{x} \cos \omega+\mathrm{y} \sin \omega=\mathrm{p}$.
** Distance of a point $P\left(x_{1}, y_{1}\right)$ from the line $a x+b y+c=0$ is $d=\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right|$.
** Equation of the line parallel to $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ is $\mathrm{ax}+\mathrm{by}+\lambda=0$.
** Equation of the line perpendicular to $a x+b y+c=0$ is $b x-a y+\lambda=0$.
** If two lines are intersecting and θ is the angle between them, then $\tan \theta=\left|\frac{m_{2}-m_{1}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|$
where $m_{1}=$ slope of first line, $m_{2}=$ slope of second line and $\theta=$ acute angle.
If $\tan \theta=$ negative $\Rightarrow \theta=$ obtuse angle between the intersecting lines.
** Distance between two parallel lines $a x+b y+c_{1}=0 \& a x+b y+c_{2}=0$ is $\left|\frac{c_{1}-c_{2}}{\sqrt{a^{2}+b^{2}}}\right|$.

QUESTIONS FOR HHW

1) Slope of a line which cuts off intercepts of equal lengths on the axes is
(a) -1
(b) 0
(c) 2
(d) $\sqrt{ } 3$
2.The value of y so that the line through $(3, y)$ and $(2,7)$ is parallel to the line through $(-1,4)$ and $(0,6)$ is
a) 7
(b) 10
(c) 9
(d) 8
2) The radius of the circle $x^{2}+y^{2}+8 x+10 y-8=0$ is
a) 8
(b) 10
(c) 9
(d) 7
3) The focus of the parabola $y^{2}=-8 x$ is
A) $(2,0)$
b) $(-2,0)$
c) $(0,2)$
d) $(0,-2)$
4) Assertion (A). The slope of a line passing through two points ($-5,2$) and ($3,-2$) is $\frac{-1}{2}$

Reason (R). The slope of a line passing through two given points ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) is $\frac{x_{2-x_{1}}}{y_{2-y_{1}}}$
a) Both A and R are true and R is the correct explanation of A .
b) Both A and R are true but R is not correct explanation of A .
c) $\quad A$ is true but R is false
d) $\quad \mathrm{A}$ is false but R is true.
e)

Both A and R are false.

[^0]: * The sets $\mathrm{A}-\mathrm{B}, \mathrm{A} \cap \mathrm{B}$ and $\mathrm{B}-\mathrm{A}$ are mutually disjoint sets, i.e., the intersection of any of these two sets is the null set.

[^1]: ** Function: A relation f from a set A to a set B is said to be a function if every element of set A has one and only one image in set B .

